Hello,

I am doing a simple fit of a Poisson model to some data. The expected number of events is nexp = (1+delta . Theta) s + b, Theta and s are floating, Theta is constrained by a Gaussian G(Theta,GlobalTheta,1), with GlobalTheta = 0, and in a range [-5,5]. The pdf is built via RooWorkspace::factory.

I am doing the fit just via pdf->fitTo(data). data is just the number of observed events nobs. If I do this two times, the NLL at minimum are very different (although the two found (s,Theta) are very close to (nobs-b,0)). The difference in NLL is ln(10). This is because the contribution from the Gaussian constrain is 0.5 ln(2pi) in the first fit, but it is ln(2pi*Delta) in the second, where Delta is the length of the interval for GlobalTheta : in the second fit, the normalisation for the Constrain is w.r.t. to Theta **and** GlobalTheta. Is it the expected behaviour ? Shouldn’t one also cache the parameters cPars here

in addition to the constrain, and retrieve them if cached ? At this level, the GlobalTheta has been removed, whereas if one uses the cache, GlobalTheta is still in the parameters used for the constrain normalisation, isn’t it ?

Best,

Jean-Baptiste