Bi-exponential Fit getting fails

I am focusing on analyzing the global time to extract both the decay and rise times by applying a bi-exponential fit. However, I am encountering some challenges with the fitting process. Specifically, the chi-squared value of the fit is huge, and the second rise time appears to be shorter than the first.

I am attaching reference images that illustrate the expected data, as well as my current output for your review. Any advice or suggestions on resolving these issues would be greatly appreciated.

Thank you in advance, and I look forward to your responses.
Reference image.
Screenshot from 2024-10-24 11-04-34
output image

ROOT Version: 6.32.04
Platform: 22.04.1-Ubuntu
Compiler: C++


Welcome to the ROOT forum.

Do you have some example macro reproducing your problem ?

#include <TFile.h>
#include <TTree.h>
#include <TH1F.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TStyle.h>
#include <TPaveStats.h>
#include <iostream>
#include <vector>

void GLobalTimeVsPhotonCount() {
    gStyle->SetOptStat(0);
    gStyle->SetOptFit(1111);
    gStyle->SetFitFormat("6.3g");
    gStyle->SetStatFormat("6.3g");
    
    TFile *file = TFile::Open("Outputtest.root");
    if (!file || file->IsZombie()) {
        std::cerr << "Error: Could not open file." << std::endl;
        return;
    }
    
    TTree *tree = dynamic_cast<TTree*>(file->Get("Photon_Hit"));
    if (!tree) {
        std::cerr << "Error: Could not find tree Photon_Hit." << std::endl;
        file->Close();
        return;
    }

    // Canvas setup with improved styling
    TCanvas *c1 = new TCanvas("c1", "Time Spectrum", 1400, 800);
    c1->SetMargin(0.12, 0.05, 0.12, 0.05); // left, right, bottom, top
    gPad->SetGridx();
    gPad->SetGridy();
    gPad->SetLogy();
    
    double globalTime;
    tree->SetBranchAddress("GlobalTime_ns", &globalTime);
   
    TH1F *hist = new TH1F("hist", "Time Spectrum",350, -5, 380);
    hist->GetXaxis()->SetTitle("Time [ns]");
    hist->GetYaxis()->SetTitle("Number of Counts");
    hist->SetMarkerStyle(20);
    hist->SetMarkerSize(0.8);
    hist->SetLineColor(kBlue);
    
    // Vector to store time values for statistics
    std::vector<double> timeValues;
    Long64_t nEntries = tree->GetEntries();
    for (Long64_t i = 0; i < nEntries; ++i) {
        tree->GetEntry(i);
        hist->Fill(globalTime);
        timeValues.push_back(globalTime);
    }
    
    // Calculate statistics for better initial parameters
    std::sort(timeValues.begin(), timeValues.end());
    double median = timeValues[timeValues.size()/2];
    int maxBin = hist->GetMaximumBin();
    double peakPos = hist->GetXaxis()->GetBinCenter(maxBin);
    double max_val = hist->GetMaximum();
    
    // Improved fit function with better initial parameters
    TF1 *fit_func = new TF1("fit_func", 
        "[0] * ([5] * (exp(-x/[2]) - exp(-x/[1])) / ([2] - [1]) + "
        "(1-[5]) * (exp(-x/[4]) - exp(-x/[3])) / ([4] - [3]))", 
        -4, 400);
    
    // Set parameter names first for clarity
    fit_func->SetParName(0, "Amplitude");
    fit_func->SetParName(1, "#tau_{rise1}");
    fit_func->SetParName(2, "#tau_{decay1}");
    fit_func->SetParName(3, "#tau_{rise2}");
    fit_func->SetParName(4, "#tau_{decay2}");
    fit_func->SetParName(5, "MixingRatio");
    fit_func->SetParName(6, "Background");
    
  
    // Adjusted parameter limits based on physics
    fit_func->SetParLimits(0, max_val*0.1, max_val*5);    // Amplitude
    fit_func->SetParLimits(1, 0.5, 10);                   // tau_rise1
    fit_func->SetParLimits(2, 15, 40);                    // tau_decay1
    fit_func->SetParLimits(3, 0.1, 5);                    // tau_rise2
    fit_func->SetParLimits(4, 80, 150);                   // tau_decay2
    fit_func->SetParLimits(5, 0.4, 0.9);                  // mixing ratio
    fit_func->SetParLimits(6, 0, max_val*0.05);           // background
    
    // Improved fit options
    fit_func->SetLineColor(kRed);
    fit_func->SetLineWidth(2);
    hist->Fit(fit_func, "REMN"); // R=fit range, E=error estimation, M=improved fit, N=no draw
    
    // Draw with improved styling
    hist->SetTitle("");  // Remove title, it's redundant with axis labels
    hist->GetXaxis()->SetTitleSize(0.045);
    hist->GetYaxis()->SetTitleSize(0.045);
    hist->GetXaxis()->SetLabelSize(0.04);
    hist->GetYaxis()->SetLabelSize(0.04);
    hist->Draw("E1");  // E1 for error bars
    fit_func->Draw("same");
    
    // Add custom stats box
    TPaveText *stats = new TPaveText(0.65, 0.45, 0.89, 0.89, "NDC");
    stats->SetFillColor(0);
    stats->SetBorderSize(1);
    stats->SetTextAlign(12);
    stats->AddText(Form("#chi^{2}/ndf = %.3f", fit_func->GetChisquare()/fit_func->GetNDF()));
    
    // Add parameters except MixingRatio and Background
    for(int i = 0; i < fit_func->GetNpar(); ++i) {
        if (i == 5 || i == 6) continue;  // Skip "MixingRatio" and "Background"
        stats->AddText(Form("%s = %.3f #pm %.3f", 
            fit_func->GetParName(i),
            fit_func->GetParameter(i),
            fit_func->GetParError(i)));
    }
    stats->Draw();
    
    // Print detailed results, excluding MixingRatio and Background
    std::cout << "\nDetailed Fit Results:" << std::endl;
    std::cout << "Chi2/NDF = " << fit_func->GetChisquare()/fit_func->GetNDF() << std::endl;
    std::cout << "Probability = " << fit_func->GetProb() << std::endl;
    for(int i = 0; i < fit_func->GetNpar(); ++i) {
        if (i == 5 || i == 6) continue;  // Skip "MixingRatio" and "Background"
        std::cout << fit_func->GetParName(i) << " = " 
                  << fit_func->GetParameter(i) << " ± " 
                  << fit_func->GetParError(i) << std::endl;
    }
    
    // Save the result
    c1->SaveAs("time_spectrum_fit.pdf");
    TFile outFile("delaytime.root", "RECREATE");
    c1->Write();
    outFile.Close();
    file->Close();
    delete c1;
}

Thank you. I gues @moneta can have a look. If possibe, it would be also nice to have access to the .root file so we can run your example.

Hi, @moneta. Please suggest the errors in my code that fit the bi-exponential so that I can change my code and re-analyze. I would be grateful for the help.

The file can be downloaded using the following link: [Preformatted text](https://filesender.garr.it/?s=download&token=b13cd28e-f32d-4204-a82b-caad36c824b9)