/// \file /// \ingroup tutorial_fit /// \notebook /// Combined (simultaneous) fit of two histogram with separate functions /// and some common parameters /// /// See http://root.cern.ch/phpBB3//viewtopic.php?f=3&t=11740#p50908 /// for a modified version working with Fumili or GSLMultiFit /// /// N.B. this macro must be compiled with ACliC /// /// \macro_image /// \macro_output /// \macro_code /// /// \author Lorenzo Moneta #include #include #include #include #include #include #include #include // definition of shared parameter // background function int iparB[2] = { 0, // exp amplitude in B histo 2 // exp common parameter }; // signal + background function int iparSB[5] = { 1, // exp amplitude in S+B histo 2, // exp common parameter 3, // Gaussian amplitude 4, // Gaussian mean 5 // Gaussian sigma }; // Create the GlobalCHi2 structure struct GlobalChi2 { GlobalChi2(ROOT::Math::IMultiGenFunction &f1, ROOT::Math::IMultiGenFunction &f2) : fChi2_1(&f1), fChi2_2(&f2) {} // parameter vector is first background (in common 1 and 2) // and then is signal (only in 2) double operator()(const double *par) const { double p1[2]; for (int i = 0; i < 2; ++i) p1[i] = par[iparB[i]]; double p2[5]; for (int i = 0; i < 5; ++i) p2[i] = par[iparSB[i]]; return (*fChi2_1)(p1) + (*fChi2_2)(p2); } const ROOT::Math::IMultiGenFunction *fChi2_1; const ROOT::Math::IMultiGenFunction *fChi2_2; }; void combinedFit() { TH1D *hB = new TH1D("hB", "histo B", 100, 0, 100); TH1D *hSB = new TH1D("hSB", "histo S+B", 100, 0, 100); TF1 *fB = new TF1("fB", "expo", 0, 100); fB->SetParameters(1, -0.05); hB->FillRandom("fB"); TF1 *fS = new TF1("fS", "gaus", 0, 100); fS->SetParameters(1, 30, 5); hSB->FillRandom("fB", 2000); hSB->FillRandom("fS", 1000); // perform now global fit TF1 *fSB = new TF1("fSB", "expo + gaus(2)", 0, 100); ROOT::Math::WrappedMultiTF1 wfB(*fB, 1); ROOT::Math::WrappedMultiTF1 wfSB(*fSB, 1); ROOT::Fit::DataOptions opt; ROOT::Fit::DataRange rangeB; // set the data range rangeB.SetRange(10, 90); ROOT::Fit::BinData dataB(opt, rangeB); ROOT::Fit::FillData(dataB, hB); ROOT::Fit::DataRange rangeSB; rangeSB.SetRange(10, 50); ROOT::Fit::BinData dataSB(opt, rangeSB); ROOT::Fit::FillData(dataSB, hSB); ROOT::Fit::Chi2Function chi2_B(dataB, wfB); ROOT::Fit::Chi2Function chi2_SB(dataSB, wfSB); GlobalChi2 globalChi2(chi2_B, chi2_SB); ROOT::Fit::Fitter fitter; const int Npar = 6; double par0[Npar] = {5, 5, -0.1, 100, 30, 10}; // create before the parameter settings in order to fix or set range on them fitter.Config().SetParamsSettings(6, par0); // fix 5-th parameter fitter.Config().ParSettings(4).Fix(); // set limits on the third and 4-th parameter fitter.Config().ParSettings(2).SetLimits(-10, -1.E-4); fitter.Config().ParSettings(3).SetLimits(0, 10000); fitter.Config().ParSettings(3).SetStepSize(5); fitter.Config().MinimizerOptions().SetPrintLevel(0); fitter.Config().SetMinimizer("Minuit2", "Migrad"); // fit FCN function directly // (specify optionally data size and flag to indicate that is a chi2 fit) fitter.FitFCN(6, globalChi2, 0, dataB.Size() + dataSB.Size(), true); ROOT::Fit::FitResult result = fitter.Result(); result.Print(std::cout); cout<<" Chi2 = "<Divide(1, 2); c1->cd(1); gStyle->SetOptFit(1111); fB->SetFitResult(result, iparB); fB->SetRange(rangeB().first, rangeB().second); fB->SetLineColor(kBlue); hB->GetListOfFunctions()->Add(fB); hB->Draw(); c1->cd(2); fSB->SetFitResult(result, iparSB); fSB->SetRange(rangeSB().first, rangeSB().second); fSB->SetLineColor(kRed); hSB->GetListOfFunctions()->Add(fSB); hSB->Draw(); }