
Tutorial	on		
ROOT	and	Data	Analysis	

Arun	Nayak	
Ins5tute	of	Physics	

Bhubaneswar	

Objec5ve	
•  This	tutorial	is	about	doing	data	analysis	using	ROOT	Tree	

•  We	discuss	wri5ng	and	reading	events	to/from	tree,	where	trees	are	
defined	in	various	formats	

•  We	start	from	simpler	examples	and	slowly	add	more	features	that	makes	
data	storage	and	analysis	easier.		

•  The	programs	for	the	examples	discussed	here	are	available	in	the	tutorial	
directory.	You	need	to	look	at	those	programs,	when	we	discuss	them,	try	
to	understand	and	use	them	for	prac5ce.		

•  Please	don’t	hesitate	to	ask	any	ques5ons	or	report	your	problems	and	
difficul5es	

•  Once	we	go	through	the	examples,	there	are	some	exercises	for	you	to	
work	on.		

•  Reference:	
hNps://root.cern.ch/root/htmldoc/guides/users-guide/
ROOTUsersGuide.html	

2	

Tree	

3	

ROOT	Tree	(TTree	class)	is	designed	to	store	large	quan55es	of	same-class	objects,	
and	is	op5mized	to	reduce	disk	space	and	enhance	access	speed.		
It	can	hold	all	kind	of	data,	such	as	objects	or	arrays,	in	addi5on	to	simple	types.	
	
An	example	for	crea5ng	a	simple	Tree		

Run	the	macro:	
	
root	-l	tree_example1.C	

More	on	TBranch	

4	

•  The	class	for	a	branch	is	called	TBranch	

•  A	variable	in	a	TBranch	is	called	a	leaf	(TLeaf)	

•  If	two	variables	are	independent	they	should	be	placed	on	separate	branches.	
However,	if	they	are	related	it	is	efficient	to	put	them	on	same	branch	

•  TTree::Branch()	method	is	used	to	add	a	TBranch	to	TTree	

•  The	branch	type	is	decided	by	the	object	stored	in	it	

•  A	branch	can	hold	an	en5re	object,	a	list	of	simple	variables,	contents	of	a	folder,	
contents	of	a	TList,	or	an	array	of	objects.		

For	example:	
tree->Branch("Ev_Branch",&event,		"temp/F:ntrack/I:nseg:nvtex:flag/i");		

Where	“event”	is	structure	with	one	float,	three	integers,	and	one	unsigned	integer.	

Accessing	TTree	

5	

Show	an	entry:	
	
root	[]	TFile	f("myfile.root")	
root	[]	T->Show(10)	
======>	EVENT:10	
	px														=	0.680243	
	py														=	0.198578	
	pt														=	0.708635	
	random										=	0.586894	

Print	the	Tree	structure:	
	
root	[]	T->Print()	

*Tree				:T									:	simple	tree																																																																																			*	
*Entries	:				10000	:	Total	=										202834	bytes		File		Size	=					169658											*	
*								:										:	Tree	compression	factor	=			1.19																																																		*	

*Br				0	:px								:	px/F																																																																																															*	
*Entries	:				10000	:	Total		Size=						40594	bytes		File	Size		=						37262											*	
*Baskets	:								2	:	Basket	Size=						32000	bytes		Compression=			1.08												*	
*..																																													*	
*Br				1	:py								:	py/F																																																																																															*	
*Entries	:				10000	:	Total		Size=						40594	bytes		File	Size		=						37265											*	
*Baskets	:								2	:	Basket	Size=						32000	bytes		Compression=			1.08												*	
*..																																													*	
*Br				2	:pt								:	pt/F																																																																																																*	
*Entries	:				10000	:	Total		Size=						40594	bytes		File	Size		=						35874											*	
*Baskets	:								2	:	Basket	Size=						32000	bytes		Compression=			1.12												*	
*..																																													*	
*Br				3	:random				:	random/D																																																																															*	
*Entries	:				10000	:	Total		Size=						80696	bytes		File	Size		=						58600											*	
*Baskets	:								3	:	Basket	Size=						32000	bytes		Compression=			1.37												*	
*..																																													*	

Scan	a	few	variables:	

root	[]	T->Scan("px:py:pt")	

*				Row			*								px	*								py	*								pt	*	

*								0	*	0.8966467	*	-1.712815	*	1.9333161	*	
*								1	*	1.5702210	*	0.5797516	*	1.6738297	*	
*								2	*	0.6975117	*	0.1442547	*	0.7122724	*	
*								3	*	0.0616207	*	-1.009907	*	1.0117853	*	
*								4	*	-0.054552	*	1.3832200	*	1.3842953	*	
*								5	*	-2.017178	*	1.4682819	*	2.4949667	*	
*								6	*	0.8903368	*	2.5101616	*	2.6633834	*	
*								7	*	-1.098390	*	-0.318103	*	1.1435256	*	
*								8	*	0.3865155	*	0.0235152	*	0.3872301	*	
*								9	*	1.8970719	*	1.9546536	*	2.7238855	*	
*							10	*	0.6802427	*	0.1985776	*	0.7086347		

Accessing	TTree	

6	

Open	and	Draw	branches	using	TBrowser:	

Using	TTree::Draw()	
	
T->Draw("pt")	

2D	plot:	
T->Draw(“py:px”)	

Simple	Analysis	using	TTree::Draw()	

7	

Applying	cuts:	
T->Draw(“pt”,	“px>0&&py>0”)	
	
For	applying	“weights”	to	the	distribu5on:	
Selec5on	=	“weight	*	(boolean	expression)”	
Where	“weight”	is	a	event-by-event	weight	stored	as	
a	branch	in	the	ntuple	(e.g.	cross	sec5on	*	luminosity	
for	the	normaliza5on)	

Using	TCuts:	
TCut	c1	=	“px	>	0”	
TCut	c2	=	“py	<	0”	
TCut	c3	=	c1	&&	c2	
T->Draw(“pt”,	c3)		
T->Draw(“pt”,	c1	&&	c2)	
T->Draw(“pt”,	c1	&&	“py	>	0”)	
TCut	c4	=	c1	||	c2	
T->Draw(“pt”,	c4)	
T->Draw(“pt”,	c1	||	c2)	

Filling	Histograms:	
TH1F	*hist	=	new	TH1F("hist",	"",	100,	0.,	2.);	
T->Draw("pt>>hist");	
hist->SetLineColor(2);	
hist->Draw("same")	

A	Simple	Analyzer	

8	

Run	the	macro:	
root	-l	tree_example2.C	

Task:	Add	histogram	aNributes	(axis	5tle,	
line	color	etc..)	

Adding	Branch	with	Arrays	

9	

Run	Macro:	
root	-l	tree_example3.C	

See	the	contents:	

Reading	Branch	with	Arrays		

10	

Branch	with	Vectors	

11	

You	get	only	pointers	to	vectors	in	TTree::Show()	method	
TTree::Draw()	works	only	for	basic	type	vectors	

Advantage:	No	need	to	define	arrays	with	MAX	SIZE	

Exercises	

12	

•  There	are	two	root	files	in	your	tutorial	directory:	“ntuple_array.root”	and	
“ntuple_vector.root”	

•  They	contain	events	simulated	with	the	process	pp	à	Z	à	e+e-	or	µ+µ-	

•  The	tree	contains	branches	for	momentum,	par5cle	ID	etc..	for	generated	
electron/muon	(branch	names	like	genPar5clePx	etc..),	momentum,	iden5fica5on,	
isola5on	variables	etc..	for	reconstructed	electrons	and	muons	(branch	names	like	
muonPx,	electronPx	etc..)	

•  File	“ntuple_array.root”	contains	tree	with	branches	as	variable	arrays	
•  File	“ntuple_vector.root”	contains	tree	with	branches	as	vectors	

•  Write	your	own	macro/code	(two	separate	macro	for	two	input	files)	to	read	the	
trees	from	the	files	

•  Select	events	where	you	have	two	generated	muons	(or	electrons)	of	opposite	
charge.	Combine	the	momenta	of	the	generated	µ+µ-	(e+e-)	pair	to	get	the	
momentum	of	Z	boson.	Plot	the	mass	of	the	generated	Z	boson		

•  Select	events	where	you	have	two	reconstructed	muons	(or	electrons)	of	opposite	
charge.	Combine	the	momenta	of	the	reconstructed	µ+µ-	(e+e-)	pair	to	get	the	
momentum	of	Z	boson.	Plot	the	mass	of	the	reconstructed	Z	boson		

Branch	with	Event	Class	–	I		

13	

First	write	your	own	Event	class	in	a	separate	header	file.		
An	example	“MyEvent.h”:	

Create	a	shared	object	file,	using	
the	command	in	root	prompt:	
	
.L	MyEvent.h+	
	
It	will	create	a	.so	file,	like	
MyEvent_h.so,	in	the	same	
directory.		
Note:	It	uses	ACLiC	to	generate	
dic5onaries	
	
OR,	you	can	use	the	rootcint.	
For	that,	use	the	Makefile	given	in	
the	tutorial	directory.		
Just	use	the	command	“make”	

Branch	with	Event	Class	-	II	

14	

To	run	this	program,	you	need	
to	first	load	the	library	
containing	the	class	defini5on,	
as	follows:	
root	–l	
.L	libMyEvent.so		
.L	tree_example8.C	
tree_example8()	

See	the	tree	content	using	TTree::Show()	
and	in	TBrowser	

Branch	with	Event	Class	-	III	

15	

Run	this	program,	as	follows:	
root	–l	
.L	libMyEvent.so		
.L	tree_example9.C	
tree_example9()	

Look	at	the	produced	plots.	
Do	you	get	the	same	distribu5ons	as	example2?	

Branch	with	Event	Class	-	IV	

16	

In	the	previous	example,	you	have	one	
object	(par5cle)	per	entry.	However,	
you	normally	have	many	par5cles	per	
event.	In	this	case,	you	can	use	
vector<MyEvent>	as	the	branch.		

Run	this	program,	as	follows:	
root	–l	
.L	libMyEvent.so		
.L	tree_example10.C	
tree_example10()	

Branch	with	Event	Class	-	V	

17	

Run	this	program,	as	follows:	
root	–l	
.L	libMyEvent.so		
.L	tree_example11.C	
tree_example11()	

Look	at	the	produced	plots.	
Do	you	get	the	same	distribu5ons	as	example7?	

Exercises	

18	

•  Read	the	Tree	from	“ntuple_array.root”		
•  Write	your	own	class	for	each	par5cle	type,	like	MyGenPar5cle.h,	MyElectron.h,	

MyMuon.h		
•  Create	a	new	tree	with	branches	like	vector<MyGenPar5cle>,	vector<myMuon>,	

vector<MyElectron>	
•  Write	the	events	from	“ntuple_array.root”	to	new	tree	and	write	the	new	tree	to	

a	new	file.		

•  Read	your	new	tree	from	the	newly	created	file	and	do	the	following	exercises	as	
before.	

•  Select	events	where	you	have	two	generated	muons	(or	electrons)	of	opposite	
charge.	Combine	the	momenta	of	the	generated	µ+µ-	(e+e-)	pair	to	get	the	
momentum	of	Z	boson.	Plot	the	mass	of	the	generated	Z	boson		

•  Select	events	where	you	have	two	reconstructed	muons	(or	electrons)	of	opposite	
charge.	Combine	the	momenta	of	the	reconstructed	µ+µ-	(e+e-)	pair	to	get	the	
momentum	of	Z	boson.	Plot	the	mass	of	the	reconstructed	Z	boson		

Analysis	using	“MakeClass”	method	

19	

It	is	a	useful	method	provided	by	ROOT	to	do	data	analysis	using	Tree.		
(You	can	also	look	at	“MakeSelector”	method,	which	is	not	discussed	here)		

For	example:		
produce	a	tree	using	the	tree_example8.C	program,	to	start	from	a	simpler	one	
Load	the	file	in	root	and	use	following	command:	
	
root	-l	
TFile	f("myfile.root")	
.ls	
T->MakeClass("MyClass")	

It	creates	two	files	MyClass.h	and	MyClass.C	
	
Edit	MyClass.C	(modifying	MyClass::Loop()	func5on)	to	add	histograms,	do	
event	selec5ons,	save	the	histograms	to	file	
	
Then,	run	the	program	as	following:	
root	–l		
.L	MyClass.C	
MyClass	m	
m.Loop()	

Analysis	using	“MakeClass”	method	

20	

void	MyClass::Loop()	
{	
//Add/define	output	file,	histograms	here,	like:	
TH2F	*h_pxpy	=	new	TH2F("h_pxpy",	"py	Vs	px",	100,	-2.0,	2.0,	100,	-2.0,	2.0);	
TH1F	*h_pt	=	new	TH1F("h_pt",	"pt",	100,	0.,	5.0);	
	
	if	(fChain	==	0)	return;	
	
			Long64_t	nentries	=	fChain->GetEntriesFast();	
	
			Long64_t	nbytes	=	0,	nb	=	0;	
			for	(Long64_t	jentry=0;	jentry<nentries;jentry++)	{	
						Long64_t	ientry	=	LoadTree(jentry);	
						if	(ientry	<	0)	break;	
						nb	=	fChain->GetEntry(jentry);			nbytes	+=	nb;	
						//	if	(Cut(ientry)	<	0)	con5nue;	
	
					//Add	event	selec5on	and	histogram	filling	here	
					Float_t	hPt	=	0;		
				Int_t	h_index	=	-1;	
				if(pt->size()	>	0){	
						for(Int_t	j	=	0;	j	<	pt->size();	j++){	
								if((*pt)[j]	>	hPt){	
										hPt	=	(*pt)[j];	
										h_index	=	j;	
								}	
						}	
						h_pxpy->Fill((*px)[h_index],	(*py)[h_index]);	
						h_pt->Fill((*pt)[h_index]);	
				}	
			}	
//Plot	the	histograms	here	
h_pxpy->Draw("colz");	
}	

LorentzVector	

21	

ROOT	provides	general	four-vector	classes	that	can	be	used	either	for	the	
descrip5on	of	posi5on	and	5me	(x,	y,	z,	t)	or	momentum	and	energy	(px,	py,	pz,	E)	

TLorentzVector	
•  It	provides	a	general	four	vector	class	that	has	various	methods	to	

ini5alize,	set	and	get	various	quan55es	of	a	four	vector	(e.g.,	pt,	eta,	phi,	
mass	etc..)	

•  Perform	arithme5c	opera5ons,	Lorentz	transforma5ons	
•  Compute	angular	separa5on	between	four	vectors	
•  A	small	example	of	using	TLorentzVector	is	given	in	next	slide	
•  More	details:	hNps://root.cern.ch/doc/master/classTLorentzVector.html	

More	advanced	four-vector	classes	are	provided	by	ROOT	MathCore	library:		
hNps://root.cern.ch/root/html518/MATHCORE_Index.html	
For	example:	
ROOT::Math::LorentzVector<ROOT::Math::PxPyPzE4D<double>	>	

Example	for	TLorentzVector	

22	

Example	for	TLorentzVector	

23	

Run	the	macro:	
	
root	-l	tree_example12.C	

