
ACAT 2019, Poster Session Saas-Fee, Switzerland

Generalization of Homogeneity Tests Used in HEP Experiments
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Goals:

• To develop homogeneity (two sample) tests which can be applied to weighted unbinned data samples in ROOT

• To verify that suggested generalized tests statistics have their presumed distribution

• To compare power of tests for χ2 test, Kolmogorov-Smirnov test, Anderson-Darling test, and Cramér-von Mises test

I. Introduction
Homogeneity tests currently available in ROOT

•TH1::Chi2Test

– it allows testing weighted data

– it is unreliable when sample sizes are significantly different

– it can be applied only to binned data; however, various binning can
lead to different test’s conclusion

•TH1::KolmogorovTest is a modification of the Kolmogorov-
Smirnov (KS) test that can be applied to binned weighted data; how-
ever, returned p-value is higher than the true one

•TH1::AndersonDarlingTest is a modification of the Anderson-
Darling (AD) test, it can be applied to binned unweighted data only

•TMath::KolmogorovTest is the classical KS test which can be
applied only to unweighted and unbinned data

•ROOT::Math::GoFTest

– this class contains implementations of KS and AD test

– both tests are applicable to unweighted and unbinned samples

– AD test can be applied also to binned data

Problems with binned data
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An example of various binning of the same sample and its effect.
Samples were produced from N(0,1) and N(0.1,1)

•Two different binning configuration

nbins = 10, min = -2.5, max = 2.5, pval = 0.0387

nbins = 11, min = -2.45, max = 2.55, pval = 0.0972

•Different results

– χ2 test (or any other test of
binned data) can lead to differ-
ent decision if user adjusts the
binning configuration

– higher number of bins usually
leads to higher p-value

•Advantages of tests based
on EDF

– while histogram loses informa-
tion of sample’s distribution
within each bin, EDF keeps
complete information

– every difference inside bin can
be counted (such as Cramér-
von Mises (CvM) or AD test)

– binned KS test does not find
the true maximum distance be-
tween EDFs but maximum dis-
tance between cumulative his-
tograms which is most likely
lower

II. Generalized homogeneity tests
We suggest modifications of KS, CvM and AD homogeneity tests statistics. Let (X,W ) =
((X1, ..., Xn)′, (W1, ...,Wn)′) be first sample with its weights and (Y ,V ) = ((Y1, ..., Ym)′, (V1, ..., Vm)′) the
second one. Let W• =

∑n
i=1Wi and K1

4
(·) be Bessel function of the third kind.

•Fundamental definitions
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•Anderson-Darling test
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III. Numerical verification of presumed distributions
Since no theoretical proof of asymptotic properties has been done yet, we can demonstrate them numerically.
If we consider data as random variables, distribution of test statistic is a continuous function, and the null
hypothesis is true then

p-value =̇ 1− FT
(
T
W ,V
n,m

)
∼ U(0, 1).

We carried out an experiment in which we produced two samples from different distributions and assigned
them weights in such a way that their WEDFs converge to the same distribution. Afterward, we applied
homogeneity tests.

Experiment’s description
We repeated the whole procedure 10 000 times. Then we plotted EDF of each test’s p-values and compared
it to CDF of U(0,1).

•First sample

– distribution: X ∼ N(0,1)

– sample size: n = 1000

– weights: Wi = 1

• Second sample

– distribution: Y ∼ N(0.5,1.52)

– sample size: m = 100 000

– weights: Vi =
1.5ϕ(Yi)

100ϕ
(
Yi−0.5
1.5

) where ϕ is the standard normal distribution

Results
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• Even though p-values of χ2 test are correct in this experiment, we
can show an counterexample. Let now X, Y ∼ N(0, 1) and Wi, Vi ∼
Gamma(k, θ).

• The ratios of rejec-
tion (on significance
level 0.05) for this an-
other experiment dif-
fers significantly for
various combinations
of k and θ.
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From the figures above, we can see that all four tests have their p-values distributed uniformly if the null
hypothesis is true. In this case, we consider the null hypothesis not as FX = FY but as FW

n (x)→ F (x) a.s.
and FV

m (x) → F (x) a.s. for every x ∈ R. For KS, AD and CvM tests we also verified p-values distribution
in case of FX = FY and both samples have weights produced independently from some random nonnegative
distribution (as in the counterexample).

IV. Power of test comparison
Power of test differs for various experiments’ setting. We carried out another experiment in which we observed
the effect of six parameters on the power of test.

Experiment’s description

We produced two samples from N(0,1) and N(µs, (1+σs)
2). All weights of the first sample are equal to 1 while

weights of the second sample were independently generated from Gamma(k, θ). Parameters k and θ will be
represented by mean (µw) and variance (σw) of weights. The first sample’s size is equal to n while the other
sample’s is equal to k·n. For every setting of (µs, σs, µw, µw, σw, n, k) we repeated procedure 1000 times
and calculated ratio of rejected tests (r) on significance level α = 0.05 which is power of test’s estimate.

Results
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Figure 1: Parameter setting: (µw, σw, n, k) = (0.3, 0.1, 200, 10). AD test has the highest ratio of rejected tests
for both changing parameter µs and σs. This is also true for µs = 0.3, 0.4, 0.5.
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Figure 2: Parameter setting: (µs, σs, n, k) = (0.1, 0.1, 500, 20). AD test has the highest r for both changing
parameter µw and σw. However, it is interesting discovery that rising σw lowers power of test. χ2 test is
unstable for small number of events (when µw = 0.01).
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Figure 3: Parameter setting: (µs, σs, µw, σw) = (0.1, 0.2, 0.4, 0.01). AD test has again the highest ratio of
rejected tests for both changing parameter k and n.
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