Parameter uncertainties from 2D chi-squared histogram

Hi Lorenzo,
Thank you very much for your answer.

Well in this case the parameters seems to be weekly correlated. In reality, I have more the 1000 of these plots, and they all differ from each other: in ones the correlation is positive, others negative, and in some of them the correlation is almost zero. I am aware of the chi2 = minimum_value + 1 method for only one parameter (I’ve already used that method when using only one parameter). In analogy to that method but in two dimensions, I can find the ellipse for which chi2_function = minimum_value + 2.3 (for 68.3% confidence level) but that is more complicated (I am currently working with it, performing some tests…)

With respect to the binning I am afraid I can only change the binning in the y-direction (stretch in my plots), since shifts represents shifting of one histogram with respect to another, by one bin at the time. I tried working with simulated annealing but, as you have said here this method doesn’t return uncertainties. For this case, as the shift represent steps with fixed size, I can’t use Minuit minimizer to minimize the chi2 function neither.

I was wondering if there is any other method to find the uncertainties for cases like these, as they seem to be very common practices (or am I wrong?)

Thank you very much.
Cheers,
Francisco